Error del sistema de control basado en el valor del proceso diferencial

0

En un controlador PID básico, mide el valor de proceso y (como la temperatura) directamente; entonces el error e es igual a la diferencia entre el valor del proceso y el punto de ajuste r . El error alimenta un controlador PID C que a su vez emite una señal de control u a un efector, en este caso puede ser un elemento de calefacción, que controla el proceso P.

Pero¿quépasaconunsistemadebúsquedadepicos,comounsintonizadordeantena?Aquí,siguesiendodeciclocerrado,peronohayun"punto de ajuste" definido, y en lugar de poder medir el valor del proceso directamente, solo podemos medir una cifra de mérito no direccional, como la intensidad de la señal. Simplemente intentamos ajustar la intensidad máxima de la portadora, donde el efector podría ser un condensador de sintonización. El error podría establecerse como

$$ e = - \ frac {\ Delta y} {\ Delta u} $$

Es decir, para algunas perturbaciones positivas en el efector, si mejora la intensidad de la señal, disminuya el error.

¿Ya existe tal sistema de control? Si es así, ¿cuál es su nombre para que pueda leer más?

    
pregunta Reinderien

1 respuesta

1

Está intentando pensar en esto como un "problema de control de seguimiento de referencia". La situación que describe todavía está relacionada con los sistemas de control, pero intenta resolver un problema diferente: un problema de optimización.

Si desea localizar una "fuerza máxima", esto significa que desea resolver el problema de encontrar un máximo local. Se pueden aplicar los mismos enfoques matemáticos utilizados para los problemas de optimización numérica. El más intuitivo es el método de descenso de gradiente. Intentaré describir cómo encontrar un máximo local en términos genéricos, para que vea cómo se aplica a su problema.

  1. Para el estado actual del sistema, determine la dirección de mayor aumento (la dirección del vector de gradiente).

  2. Lleve su sistema a un nuevo estado en esa dirección, en un paso que sea proporcional a la magnitud del aumento.

  3. Iterar hasta que el aumento en cualquier dirección sea de menor magnitud que una tolerancia dada (las derivadas en el punto son arbitrariamente cercanas a cero, se encontró el punto de optimización).

Otra forma de expresarlo es, como ha descrito en su pregunta, la señal de error es un derivado. Bueno, resolver un problema de optimización significa esencialmente encontrar un punto con derivados cerca de cero.

    
respondido por el Vicente Cunha

Lea otras preguntas en las etiquetas