Inicialmente hice esta pregunta en math.stackexchange.com, pero nadie respondió, así que pensé que podía intentar preguntar aquí, al menos hasta cierto punto esto está relacionado. a la ingeniería eléctrica.
Por favor, ayúdame a corregir mi comprensión.
$$ C ^ {- 1} y + Ax = b \\ A ^ Ty = f $$
Este par son ecuaciones de equilibrio, \ $ C ^ {- 1} + Ax = b \ $ representa la ley de Ohm, derivada de:
$$ e = b-Axe $$
Vector \ $ x \ $ representa el potencial en cada nodo en un gráfico, en cada nodo, la fuerza abstracta actual que repele el flujo abstracto. El flujo va a un potencial más bajo (que repele menos). El acto de multiplicación \ $ Ax \ $ produce una diferencia potencial. Simplemente agrego todos los vectores de columnas ajustados por el potencial correspondiente en cada nodo, esto ciertamente me debería dar diferencias potenciales en cada borde. Pero la fórmula me dice:
$$ Ax = b-e $$
Este es mi problema. ¿Qué significa \ $ e \ $? Sé \ $ b \ $ - diferencias potenciales, puedo encontrar potencial en cada nodo, sé \ $ x \ $, puedo encontrar diferencias. ¿Qué significa \ $ e \ $? En otras palabras, si conozco el potencial en cada nodo, entonces \ $ C ^ {- 1} y = Ax \ $?