Bueno, sabemos que:
$$ \ underline {\ mathcal {Z}} _ {\ space \ text {L}} = \ text {j} \ omega \ text {L} \ space \ space \ space \ wedge \ space \ space \ espacio \ subrayado {\ mathcal {Z}} _ {\ espacio \ texto {C}} = \ frac {1} {\ texto {j} \ omega \ texto {C}} \ tag1 $$
Entonces:
- Con \ $ 1 \ $ capacitor y \ $ 1 \ $ inductor:
$$ \ underline {\ mathcal {Z}} _ {\ space \ text {en 1}} = \ text {j} \ omega \ text {L} + \ frac {1} {\ text {j} \ omega \ texto {C}} \ tag2 $$
- Con \ $ 2 \ $ capacitores y \ $ 2 \ $ inductores:
$$ \ underline {\ mathcal {Z}} _ {\ space \ text {en 2}} = \ text {j} \ omega \ text {L} + \ frac {\ frac {1} {\ text {j} \ omega \ text {C}} \ cdot \ left (\ text {j} \ omega \ text {L} + \ frac {1} {\ text {j} \ omega \ text {C}} \ right)} { \ frac {1} {\ text {j} \ omega \ text {C}} + \ text {j} \ omega \ text {L} + \ frac {1} {\ text {j} \ omega \ text {C }}} \ tag3 $$
Y eso es válido en general, por lo que obtenemos:
$$ \ underline {\ mathcal {Z}} _ {\ space \ text {n}} = \ text {j} \ omega \ text {L} + \ frac {\ frac {1} {\ text { j} \ omega \ text {C}} \ cdot \ underline {\ mathcal {Z}} _ {\ space \ text {n} -1}} {\ frac {1} {\ text {j} \ omega \ text {C}} + \ underline {\ mathcal {Z}} _ {\ space \ text {n} -1}} \ tag4 $$
Entonces, cuando \ $ \ text {n} \ to \ infty \ $ obtenemos:
$$ \ underline {\ mathcal {Z}} _ {\ space \ infty} = \ text {j} \ omega \ text {L} + \ frac {\ frac {1} {\ text {j} \ omega \ text {C}} \ cdot \ underline {\ mathcal {Z}} _ {\ space \ infty}} {\ frac {1} {\ text {j} \ omega \ text {C}} + \ subrayado { \ mathcal {Z}} _ {\ space \ infty}} \ space \ Longleftrightarrow \ space $$
$$ \ underline {\ mathcal {Z}} _ {\ space \ infty} = \ frac {\ text {C} \ cdot \ text {L} \ cdot \ omega \ cdot \ text {j} \ pm \ sqrt { \ text {C} \ cdot \ text {L} \ cdot \ left (4- \ text {C} \ cdot \ text {L} \ cdot \ omega ^ 2 \ right)}} {2 \ cdot \ text {C }} \ tag5 $$
Como ejemplo, cuando \ $ \ text {C} = \ text {L} = 10 ^ {- 12} \ $ y \ $ \ omega = 2 \ pi \ cdot10 ^ 9 \ $:
$$ \ underline {\ mathcal {Z}} _ {\ space \ infty} = \ frac {\ pi \ cdot \ text {j} \ pm \ sqrt {10 ^ 6- \ pi ^ 2}} { 10 ^ 3} \ tag6 $$