Sabemos que:
$$ \ text {P} _ {\ space \ text {in}} = \ overline {\ text {V}} _ {\ space \ text {in}} \ cdot \ overline {\ text {I} } _ {\ space \ text {in}} \ cdot \ cos \ left (\ varphi \ right) \ tag1 $$
Entonces, cuando tenemos un circuito en serie con una resistencia y un inductor podemos escribir (suponiendo que la fuente no tiene fase):
$$ \ text {P} _ {\ space \ text {in}} = \ overline {\ text {V}} _ {\ space \ text {in}} \ cdot \ frac {\ overline {\ text {V}} _ {\ space \ text {in}}} {\ sqrt {\ text {R} ^ 2 + \ left (\ omega \ text {L} \ right) ^ 2}} \ cdot \ cos \ left (\ arctan \ left (\ frac {\ omega \ text {L}} {\ text {R}} \ right) \ right) = $$
$$ \ overline {\ text {V}} _ {\ space \ text {in}} \ cdot \ frac {\ overline {\ text {V}} _ {\ space \ text {in}}} {\ sqrt { \ text {R} ^ 2 + \ left (\ omega \ text {L} \ right) ^ 2}} \ cdot \ frac {1} {\ sqrt {1+ \ left (\ frac {\ omega \ text {L }} {\ text {R}} \ right) ^ 2}} = \ overline {\ text {V}} _ {\ space \ text {in}} ^ 2 \ cdot \ frac {\ text {R}} { \ text {R} ^ 2 + \ left (\ omega \ text {L} \ right) ^ 2} \ tag2 $$
Entonces:
$$ 50.0 = 110 ^ 2 \ cdot \ frac {24.0} {24.0 ^ 2 + \ left (2 \ pi \ cdot \ text {f} \ cdot24 \ cdot10 ^ {- 3} \ right) ^ 2} \ espacio \ implica \ espacio $$
$$ \ text {f} = \ frac {1750} {\ pi} \ cdot \ sqrt {\ frac {2} {3}} \ approx454.823134052978 \ tag3 $$