Anotar la lógica de un circuito

0

Tengo este circuito:

Estoyintentandoescribirlalógicadecadasalida(W,X,Y,Z),paraobtenerunatabladeverdad:

W=NOT(AORB)X=NOTAANDBY=AANDNOTBZ=AANDB

Perocuandosecomparaconlafuente,mitabladeverdadestáequivocada,asíqueséquetodasmislógicasestánequivocadas.

Siempreempiezodederechaaizquierdacadavezquequieroentenderuncircuitológico,porejemplo,enestecaso,lasalidaWeslasalidadeunacompuertaANDentredosparámetrosNOTW=NOTXANDNOTY,perodondehace"X" y "Y" en este caso provienen, obviamente no A y B? Mira el circuito lógico, me sentí como si estuviera perdido en un laberinto! ¡Cualquier sugerencia o sugerencia que me ayude a entender este tipo de circuitos lógicos más fáciles es muy apreciada!

    
pregunta NeedAnswers

4 respuestas

3

Si realiza un seguimiento y etiqueta las entradas de cada puerta AND, se aclara:

W = (NOT B) AND (NOT A), same as NOT (B OR A) by De Morgan
X = (NOT B) AND A
Y = B AND (NOT A)
Z = B AND A
    
respondido por el tcrosley
2

la salida de W no es A AND NOT B en lugar de NOT A OR NOT B

la salida de X no es B AND A en lugar de NOT A AND B

la salida de Y no es A y B en lugar de NO B y A

tal vez la diferencia de la salida de W resolverá tu problema

    
respondido por el T J
2

Dado que las puertas son AND verdaderos positivos, entonces para que sus salidas suban, ambas entradas de la puerta deben ser altas.

La única forma de satisfacer esa condición para que W sea verdadera, ya que tiene inversores en sus dos entradas, es hacer que las entradas bajen a los inversores, y eso se puede hacer manejando A y B a nivel bajo.

Para conducir X alto, entonces, A debe estar alto, y B debe estar bajo para impulsar la salida del inversor alto.

Para Y, A debe estar bajo y B debe estar alto ya que el inversor está en A.

Para Z, ninguna de las entradas de la puerta se invierte, por lo que cuando A y B son altas, Z subirá.

Tu tabla de verdad, entonces, se ve así:

     A   B    W   X   Y   Z
    -----------------------
     0   0    1   0   0   0
     0   1    0   0   1   0
     1   0    0   1   0   0
     1   1    0   0   0   1

Como nota aparte, tenga en cuenta que dado que tiene A y B, y dado que sus complementos están siendo generados por el par de inversores que conducen la parte superior Y, tiene todas las posibles permutaciones de entrada y el circuito podría redibujarse para eliminar los otros inversores y aún mantienen la misma funcionalidad, como esta:

    
respondido por el EM Fields
1

La salida Z es \ $ A.B \ $ como se indica, pero la salida Y se indica de manera incorrecta: -

La salida Y es \ $ \ bar A.B \ $ y no \ $ A. \ bar B \ $

La salida X es \ $ A. \ bar B \ $ y no \ $ \ bar A.B \ $

La salida W es \ $ \ bar A. \ bar B \ $

    
respondido por el Andy aka

Lea otras preguntas en las etiquetas