Realmente necesito ayuda con mi proyecto. Estoy intentando conectar ADXL345 con ATMEGA328P a través de la interfaz SPI para enviar los datos recibidos desde Atmega328P a la PC a través de la interfaz UART.
El ATMEGA328P está enviando las lecturas del acelerómetro a través de USB serial, que estoy mostrando en un programa de terminal en serie. Sin embargo, no pude mostrar ninguna lectura del acelerómetro en el terminal. No estoy seguro de dónde hice mal.
Esta es la primera vez que escribo mi propio programa y realmente espero que alguien pueda ayudarme a resolver el problema.
Conexiones:
ADXL345 ATMEGA328P
GND---------------------GND
VCC---------------------5V
CS----------------------SS (PB2)
SDO---------------------MISO(PB4)
SDA---------------------MOSI(PB3)
SCL---------------------SCK(PB5)
/*******************************************************
Chip type : ATmega328P
Program type : Application
AVR Core Clock frequency: 16.000000 MHz
Memory model : Small
External RAM size : 0
Data Stack size : 512
*******************************************************/
//#include <io.h>
#include <mega328p.h>
#include <stdio.h>
#include <spi.h>
#include <delay.h>
#include <math.h>
//Register addresses for ADXL345
#define RANGE_16G 0x0B
#define MEASURE 0x08
#define DEVID 0x00 // Device ID
#define THRESH_TAP 0x1D // Tap threshold
#define OFSX 0x1E // X-axis offset
#define OFSY 0x1F // Y-axis offset
#define OFSZ 0x20 // Z-axis offset
#define DUR 0x21 // Tap duration
#define LATENT 0x22 // Tap latency
#define WINDOW 0x23 // Tap window
#define THRESH_ACT 0x24 // Activity threshold
#define THRESH_INACT 0x25 // Inactivity threshold
#define TIME_INACT 0x26 // Inactivity time
#define ACT_INACT_CTL 0x27 // Axis enable control for activity and inactivity detection
#define THRESH_FF 0x28 // Free-fall threshold
#define TIME_FF 0x29 // Free-fall time
#define TAP_AXES 0x2A // Axis control for single tap/double tap
#define ACT_TAP_STATUS 0x2B // Source of single tap/double tap
#define BW_RATE 0x2C // Data rate and power mode control
#define POWER_CTL 0x2D //Power saving Control
#define INT_ENABLE 0x2E // interrupt enable control
#define INT_MAP 0x2F //interrupt mapping control
#define INT_SOURCE 0x30 //source of interrupts
#define DATA_FORMAT 0x31//Data Format
#define DATAX0 0x32 // X-Axis Data 0
#define DATAX1 0x33 // X-Axis Data 1
#define DATAY0 0x34 // Y-Axis Data 0
#define DATAY1 0x35 // Y-Axis Data 1
#define DATAZ0 0x36 // Z-Axis Data 0
#define DATAZ1 0x37 // Z-Axis Data 1
#define FIFO_CTL 0x38 //Fifo control
#define FIFO_STATUS 0x39 //Fifo status
//
// Expresed as output data rate
#define DATA_RATE_3200 0x0F
#define DATA_RATE_1600 0x0E
#define DATA_RATE_800 0x0D
#define DATA_RATE_400 0x0C
#define DATA_RATE_200 0x0B
#define DATA_RATE_100 0x0A
#define DATA_RATE_50 0x09
#define DATA_RATE_25 0x08
#define W 0x00
#define R 0x80
//Function prototypes
void ADXL345_init(char range, char data_rate);
void ADXL345_write(unsigned char addr,unsigned char data);
unsigned char ADXL345_read(unsigned char addr);
void read_accelerometer_1(void);
void spi_init(void);
// Declare your global variables here
unsigned char ADXL345_ID;
unsigned char lsb, msb;
signed int x_acc1, y_acc1, z_acc1;
void main(void)
{
// Crystal Oscillator division factor: 2 (8MHz)
#pragma optsize-
CLKPR=0x80;
CLKPR=0x01;
#ifdef _OPTIMIZE_SIZE_
#pragma optsize+
#endif
// Input/Output Ports initialization
// SCK(PB5):Output, MISO(PB4):Input, MOSI(PB3):Output, SS(PB2):Output
PORTB=0x04; // 0b 0000 0100 SS set to 1
DDRB=0x2C; // 0b 0010 1100 SS , SCK , MOSI and as outputs
// USART initialization
// Communication Parameters: 8 Data, 1 Stop, No Parity
// USART Receiver: On
// USART Transmitter: On
// USART0 Mode: Asynchronous
// USART Baud Rate: 2 Mbps (Double Speed Mode)
UCSR0A=0x02;
UCSR0B=0x18;
UCSR0C=0x06;
UBRR0H=0x00;
UBRR0L=0x00;
spi_init();
ADXL345_init(RANGE_16G, DATA_RATE_100);
while(1)
{
read_accelerometer_1();
//
printf("%d,%d,%d", x_acc1, y_acc1, z_acc1);
printf(",__,");
}
}
//spi initialization
void spi_init(void)
{
PORTB=0x04;
DDRB=0x2C;
SPCR=(0<<SPIE) | (1<<SPE) | (0<<DORD) | (1<<MSTR) | (1<<CPOL) | (1<<CPHA) | (0<<SPR1) | (0<<SPR0);
SPSR=(0<<SPI2X);
}
//Accelerometer functions
void ADXL345_init(char range, char data_rate)
{
ADXL345_ID=ADXL345_read(DEVID);
printf("Device ID=%X\n\r", ADXL345_ID);
ADXL345_write(POWER_CTL,0x00); //Standby mode
ADXL345_write(BW_RATE, data_rate); //Setup the device bandwidth and output data rate
ADXL345_write(DATA_FORMAT, range); //Setup data
ADXL345_write(POWER_CTL, MEASURE); //Measurement mode
delay_ms(20);
}
void ADXL345_write(unsigned char addr,unsigned char data) //write to the ADXL345
{
PORTB &= ~0b00000100; //
SPDR = W|addr; //
while (!(SPSR & 0x80)); //
SPDR=data; //
PORTB |= 0b00000100; //
delay_ms(10);
}
unsigned char ADXL345_read(unsigned char addr)
// read from the ADXL345
{
unsigned char ans;
PORTB &= ~0b00000100;
SPDR = R|addr;
while(!(SPSR & 0x80));
ans=SPDR;
PORTB |= 0b00000100;
return (ans);
}
void read_accelerometer_1(void)
{
// unsigned char x_raw, y_raw, z_raw;
//sensitivity
lsb=ADXL345_read(DATAX0);
msb=ADXL345_read(DATAX1);
x_acc1=((msb<<8) | lsb); // x_raw=((msb<<8) | lsb);
//x_acc=x_raw/sensitivity;
lsb=ADXL345_read(DATAY0);
msb=ADXL345_read(DATAY1);
y_acc1=((msb<<8) | lsb); // y_raw=((msb<<8) | lsb);
// y_acc=y_raw/sensitivity;
lsb=ADXL345_read(DATAZ0);
msb=ADXL345_read(DATAZ1);
z_acc1=((msb<<8) | lsb); // z_raw=((msb<<8) | lsb);
// z_acc=z_raw/sensitivity;
}