Aparentemente, la matriz para transformar los 3 vectores \ $ U_a, U_b, U_c \ $ en \ $ U_ \ alpha, U_ \ beta \ $ es: $$ \ begin {bmatrix} U _ {\ alpha} \\ U _ {\ beta} \\ U_ {0} \\ \ end {bmatrix} = \ begin {bmatrix} 1 & - \ frac {1} {2} & - \ frac {1} {2} \\ 0 & \ frac {\ sqrt {3}} {2} & - \ frac {\ sqrt {3}} {2} \\ \ frac {1} {2} & \ frac {1} {2} & \ frac {1} {2} \\ \ end {bmatrix} \ begin {bmatrix} U_ {a} \\ U_ {b} \\ U_ {c} \\ \ end {bmatrix} $$
Por qué en Clarke Transform, la matriz se multiplica por \ $ \ frac {2} {3} \ $
$$ T _ {\ alpha \ beta 0} = \ frac {2} {3} \ begin {bmatrix} 1 & - \ frac {1} {2} & - \ frac {1} {2} \\ 0 & \ frac {\ sqrt {3}} {2} & - \ frac {\ sqrt {3}} {2} \\ \ frac {1} {2} & \ frac {1} {2} & \ frac {1} {2} \\ \ end {bmatrix} $$