Tengo un circuito RL paralelo:
Y sé que (la corriente de entrada de RMS) \ $ \ overline {\ text {I}} _ {\ space \ text {in}} = 2 \ $ A, (el voltaje de entrada de RMS) \ $ \ overline {\ text {V}} _ {\ space \ text {in}} = 200 \ $ V, la frecuencia de entrada es \ $ 50 \ $ Hz y \ $ \ overline {\ text {P}} _ {\ space \ text {in}} = 69.44 \ $ W ahora necesito encontrar \ $ \ text {R} \ $ y \ $ \ text {L} \ $:
$$ \ begin {cases} \ overline {\ text {I}} _ {\ space \ text {in}} = \ frac {\ overline {\ text {V}} _ {\ space \ text {in}}} {\ left | \ underline { \ text {Z}} _ {\ space \ text {in}} \ right |} = \ frac {\ overline {\ text {V}} _ {\ space \ text {in}}} {\ sqrt {\ frac {R \ omega L} {R ^ 2 + (\ omega L) ^ 2}}} \\ \\ P = \ overline {\ text {V}} _ {\ space \ text {in}} \ cdot \ overline {\ text {I}} _ {\ space \ text {in}} \ cdot \ cos \ left (\ varphi _ {\ space \ text {in}} \ right) = \ overline {\ text {V}} _ {\ space \ text {in}} \ cdot \ overline {\ text {I}} _ {\ space \ text {en}} \ cdot \ cos \ left (\ frac {\ pi} {2} - \ arctan \ left (\ frac {\ omega L} {R} \ right) \ right) \ end {cases} \ tag1 $$
Usando los valores dados:
$$ \ begin {cases} 2 = \ frac {200} {\ sqrt {\ frac {R \ cdot2 \ pi \ cdot50L} {R ^ 2 + (2 \ pi \ cdot50L) ^ 2}}} \\ \\ 69.44 = 200 \ cdot2 \ cdot \ cos \ left (\ frac {\ pi} {2} - \ arctan \ left (\ frac {2 \ pi \ cdot50L} {R} \ right) \ right) \ end {cases} \ tag2 $$
Pero cuando intenté resolver el sistema obtengo números imaginarios, ¿cuál es mi error?
EDIT:
Puedo escribir:
$$ \ cos \ left (\ frac {\ pi} {2} - \ arctan \ left (\ frac {2 \ pi \ cdot50L} {R} \ right) \ right) = \ frac {2 \ pi \ cdot50L} {R} \ cdot \ frac {1} {\ sqrt {1+ \ left (\ frac {2 \ pi \ cdot50L} {R} \ right) ^ 2}} \ tag3 $$
Por lo tanto, me sale:
$$ \ begin {cases} 2 = \ frac {200} {\ sqrt {\ frac {R \ cdot2 \ pi \ cdot50L} {R ^ 2 + (2 \ pi \ cdot50L) ^ 2}}} \\ \\ 69.44 = 200 \ cdot2 \ cdot \ frac {2 \ pi \ cdot50L} {R} \ cdot \ frac {1} {\ sqrt {1+ \ left (\ frac {2 \ pi \ cdot50L} {R} \ derecha) ^ 2}} \ end {cases} \ tag4 $$
Ahora, por ejemplo, obtenemos:
$$ 2 = \ frac {200} {\ sqrt {\ frac {R \ cdot2 \ pi \ cdot50L} {R ^ 2 + (2 \ pi \ cdot50L) ^ 2}}} \ space \ Longleftrightarrow \ space L = \ frac {R \ pm Ri \ sqrt {3999999999999}} {200000000 \ pi} \ tag5 $$