STM32 - TIM2_ETR pin, conectado al pin PA0 (botón), incrementando el temporizador de manera extraña

3

Estoy tratando de implementar la atenuación PWM LED en 10 etapas, donde cada etapa es más brillante, en base al hacer clic en el botón PA0, que incrementa el pin TIM2_ETR externo, que sirve el valor del temporizador TIM2.

Estoy enfrentando un problema, que a veces, la variable value es demasiado grande de lo que debería ser y omite algunos niveles de brillo. Por ejemplo, value de incrementos: 1,2,3, luego salta a 6,7, etc.

¿Alguien puede señalar dónde está el error que estoy cometiendo? Estoy utilizando STM32F303VCTx Discovery.

Aquí está el código:

#include "main.h"
#include "stm32f3xx_hal.h"

#define __HAL_TIM_GetCounter(__HANDLE__) ((__HANDLE__)->Instance->CNT)

/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private variables ---------------------------------------------------------*/
TIM_HandleTypeDef htim1;
TIM_HandleTypeDef htim2;

/* USER CODE BEGIN PV */
/* Private variables ---------------------------------------------------------*/

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_TIM1_Init(void);
static void MX_TIM2_Init(void);                                    
void HAL_TIM_MspPostInit(TIM_HandleTypeDef *htim);


/* USER CODE BEGIN PFP */
/* Private function prototypes -----------------------------------------------*/

/* USER CODE END PFP */

/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

int main(void)
{

  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration----------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_TIM1_Init();
  MX_TIM2_Init();

  /* USER CODE BEGIN 2 */
    HAL_TIM_Base_Start(&htim1);

    HAL_TIM_Base_Start(&htim2);


    HAL_TIM_PWM_Start(&htim1,TIM_CHANNEL_1);
    HAL_TIM_PWM_Start(&htim1,TIM_CHANNEL_2);
    HAL_TIM_PWM_Start(&htim1,TIM_CHANNEL_3);
    HAL_TIM_PWM_Start(&htim1,TIM_CHANNEL_4);

    TIM1->CCER |=  (uint32_t)( TIM_CCxN_ENABLE << (0*4));
    TIM1->CCER |=  (uint32_t)( TIM_CCxN_ENABLE << (1*4));
    TIM1->CCER |=  (uint32_t)( TIM_CCxN_ENABLE << (2*4));

  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
    int originalCCR1 = 1;
    int originalCCR2 = 2;
    int originalCCR3 = 3;
    int originalCCR4 = 4;

    int brightness[] = {1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35};

  while (1)
  {
  /* USER CODE END WHILE */
        uint32_t value=__HAL_TIM_GetCounter(&htim2);

        TIM1->CCR1= originalCCR1 * brightness[value];
        TIM1->CCR2= originalCCR2 * brightness[value];
        TIM1->CCR3= originalCCR3 * brightness[value];
        TIM1->CCR4= originalCCR4 * brightness[value];

  /* USER CODE BEGIN 3 */

  }
  /* USER CODE END 3 */

}

/** System Clock Configuration
*/
void SystemClock_Config(void)
{

  RCC_OscInitTypeDef RCC_OscInitStruct;
  RCC_ClkInitTypeDef RCC_ClkInitStruct;
  RCC_PeriphCLKInitTypeDef PeriphClkInit;

    /**Initializes the CPU, AHB and APB busses clocks 
    */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_BYPASS;
  RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

    /**Initializes the CPU, AHB and APB busses clocks 
    */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

  PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_TIM1;
  PeriphClkInit.Tim1ClockSelection = RCC_TIM1CLK_HCLK;
  if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

    /**Configure the Systick interrupt time 
    */
  HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);

    /**Configure the Systick 
    */
  HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);

  /* SysTick_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
}

/* TIM1 init function */
static void MX_TIM1_Init(void)
{

  TIM_ClockConfigTypeDef sClockSourceConfig;
  TIM_MasterConfigTypeDef sMasterConfig;
  TIM_OC_InitTypeDef sConfigOC;
  TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig;

  htim1.Instance = TIM1;
  htim1.Init.Prescaler = 71;
  htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim1.Init.Period = 999;
  htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim1.Init.RepetitionCounter = 0;
  htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  if (HAL_TIM_Base_Init(&htim1) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

  if (HAL_TIM_OC_Init(&htim1) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

  if (HAL_TIM_PWM_Init(&htim1) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterOutputTrigger2 = TIM_TRGO2_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

  sConfigOC.OCMode = TIM_OCMODE_TIMING;
  sConfigOC.Pulse = 1;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  sConfigOC.OCNPolarity = TIM_OCNPOLARITY_LOW;
  sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
  sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
  if (HAL_TIM_OC_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

  sConfigOC.Pulse = 2;
  if (HAL_TIM_OC_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_2) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

  sConfigOC.Pulse = 3;
  if (HAL_TIM_OC_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

  sConfigOC.OCMode = TIM_OCMODE_PWM1;
  sConfigOC.Pulse = 4;
  if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_4) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

  sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
  sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
  sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
  sBreakDeadTimeConfig.DeadTime = 0;
  sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
  sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
  sBreakDeadTimeConfig.BreakFilter = 0;
  sBreakDeadTimeConfig.Break2State = TIM_BREAK2_DISABLE;
  sBreakDeadTimeConfig.Break2Polarity = TIM_BREAK2POLARITY_HIGH;
  sBreakDeadTimeConfig.Break2Filter = 0;
  sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
  if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

  HAL_TIM_MspPostInit(&htim1);

}

/* TIM2 init function */
static void MX_TIM2_Init(void)
{

  TIM_ClockConfigTypeDef sClockSourceConfig;
  TIM_MasterConfigTypeDef sMasterConfig;

  htim2.Instance = TIM2;
  htim2.Init.Prescaler = 0;
  htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim2.Init.Period = 18;
  htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_ETRMODE2;
  sClockSourceConfig.ClockPolarity = TIM_CLOCKPOLARITY_NONINVERTED;
  sClockSourceConfig.ClockPrescaler = TIM_CLOCKPRESCALER_DIV1;
  sClockSourceConfig.ClockFilter = 0;
  if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

}

/** Configure pins as 
        * Analog 
        * Input 
        * Output
        * EVENT_OUT
        * EXTI
     PA5   ------> SPI1_SCK
     PA6   ------> SPI1_MISO
     PA7   ------> SPI1_MOSI
     PA11   ------> USB_DM
     PA12   ------> USB_DP
     PB6   ------> I2C1_SCL
     PB7   ------> I2C1_SDA
*/
static void MX_GPIO_Init(void)
{

  GPIO_InitTypeDef GPIO_InitStruct;

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOE_CLK_ENABLE();
  __HAL_RCC_GPIOC_CLK_ENABLE();
  __HAL_RCC_GPIOF_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOE, CS_I2C_SPI_Pin|LD6_Pin, GPIO_PIN_RESET);

  /*Configure GPIO pins : DRDY_Pin MEMS_INT3_Pin MEMS_INT4_Pin MEMS_INT1_Pin 
                           MEMS_INT2_Pin */
  GPIO_InitStruct.Pin = DRDY_Pin|MEMS_INT3_Pin|MEMS_INT4_Pin|MEMS_INT1_Pin 
                          |MEMS_INT2_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_EVT_RISING;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  HAL_GPIO_Init(GPIOE, &GPIO_InitStruct);

  /*Configure GPIO pins : CS_I2C_SPI_Pin LD6_Pin */
  GPIO_InitStruct.Pin = CS_I2C_SPI_Pin|LD6_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOE, &GPIO_InitStruct);

  /*Configure GPIO pins : SPI1_SCK_Pin SPI1_MISO_Pin SPI1_MISOA7_Pin */
  GPIO_InitStruct.Pin = SPI1_SCK_Pin|SPI1_MISO_Pin|SPI1_MISOA7_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  GPIO_InitStruct.Alternate = GPIO_AF5_SPI1;
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

  /*Configure GPIO pins : DM_Pin DP_Pin */
  GPIO_InitStruct.Pin = DM_Pin|DP_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
  GPIO_InitStruct.Alternate = GPIO_AF14_USB;
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

  /*Configure GPIO pins : I2C1_SCL_Pin I2C1_SDA_Pin */
  GPIO_InitStruct.Pin = I2C1_SCL_Pin|I2C1_SDA_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
  GPIO_InitStruct.Pull = GPIO_PULLUP;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  GPIO_InitStruct.Alternate = GPIO_AF4_I2C1;
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @param  None
  * @retval None
  */
void _Error_Handler(char * file, int line)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  while(1) 
  {
  }
  /* USER CODE END Error_Handler_Debug */ 
}

#ifdef USE_FULL_ASSERT

/**
   * @brief Reports the name of the source file and the source line number
   * where the assert_param error has occurred.
   * @param file: pointer to the source file name
   * @param line: assert_param error line source number
   * @retval None
   */
void assert_failed(uint8_t* file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
    ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */

}

#endif

/**
  * @}
  */ 

/**
  * @}
*/ 
    
pregunta tine55

1 respuesta

3

Un interruptor o botón mecánico es propenso a rebotar, es decir, hace contacto y se rompe rápidamente varias veces al presionarlo o soltarlo, debido a la elasticidad de los contactos. Debería ser filtrado.

Debido a que está utilizando el modo de activación externo, puede configurar el filtro de activación externo

sClockSourceConfig.ClockFilter = 15; /* instead of 0 */

que corresponde al campo de bits ETF en TIM2->SMCR . La documentación de HAL no dice mucho acerca de este parámetro, consulte el Manual de referencia para obtener más información

La relación entre f CK_INT y f DTS está configurada en htim2.Init.ClockDivision , puede usar

htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV4;

para estirar el filtro aún más.

    
respondido por el berendi

Lea otras preguntas en las etiquetas