Lo intentaré:
deje \ $ D = \ frac {R} {2L} \ $ y \ $ \ omega ^ 2 = \ frac {1} {LC} \ $
para \ $ D ^ 2 \ not = \ omega ^ 2 \ $:
$$ I (s) = \ frac {E} {s ^ 2 + 2Ds + \ omega ^ 2} = $$
$$ = \ frac {E} {\ left (s + \ left (-D + \ sqrt {D ^ 2 - \ omega ^ 2} \ right) \ right) \ left (s + \ left (-D- \ sqrt {D ^ 2 - \ omega ^ 2} \ right) \ right)} = $$
(fracción parcial)
$$ = \ frac {E} {- 2 \ sqrt {D ^ 2 - \ omega ^ 2}} \ frac {1} {\ left (s + \ left (-D + \ sqrt {D ^ 2 - \ omega ^ 2 } \ derecha) \ derecha)} +
\ frac {E} {- 2 \ sqrt {D ^ 2 - \ omega ^ 2}} \ frac {1} {\ left (s + \ left (-D- \ sqrt {D ^ 2 - \ omega ^ 2} \ derecha) \ derecha)} $$
Buscando la transformada de Laplace
$$ \ mathcal {L} ^ {- 1} \ left [\ frac {1} {s + a} \ right] = e ^ {- at} $$
$$ \ mathcal {L} ^ {- 1} [I (s)] = \ frac {E} {- 2 \ sqrt {D ^ 2 - \ omega ^ 2}} \ left (e ^ {t \ left (-D + \ sqrt {D ^ 2 - \ omega ^ 2} \ right)} - e ^ {t \ left (-D- \ sqrt {D ^ 2 - \ omega ^ 2} \ right)} \ right ) $$
para \ $ D ^ 2 = \ omega ^ 2 \ $:
$$ I (s) = \ frac {E} {s ^ 2 + 2Ds + D ^ 2} = \ frac {E} {(s + D) ^ 2} $$
Buscando la transformada de Laplace
$$ \ mathcal {L} ^ {- 1} \ left [\ frac {1} {(s + a) ^ {n + 1}} \ right] = \ frac {t ^ n} {n!} e ^ {-at} $$
$$ \ mathcal {L} ^ {- 1} [I (s)] = E \ cdot t \ cdot e ^ {- D t} $$