Esta es la respuesta completa:
A partir de Ley de Ohm : V = R * I
en el que V: Voltaje, R: Resistencia e I: Actual .
y en el circuito más simple de un Voltage Divider como este:
para medir cualquier voltaje necesitamos dos puntos, por lo que V out se puede medir de una de las siguientes dos maneras:
(V in - V out ) = R 1 * I 1 : en la que V está en aquí está el lado positivo de la fuente de electricidad.
O
(V out - V in ) = R 2 * I 2 : en la que V está en aquí está el lado negativo y es igual a 0 .
Elegimos la opción más fácil donde V in = 0, así que V out = R 2 * I 2 .
Ahora, debido a que no hay consumo de la corriente, podemos asumir que total = I 1 = I 2 .
Así que reescriba la ecuación anterior: V out = R 2 * I total .
Ahora porque R 1 y R 2 conectados en serie, la ley dice que R total = R 1 + R 2 .
De vuelta a la Ley de Ohm, podemos decir: V in = R total * I total - > I total = V en / R total .
Usando la última ecuación, tendremos: V out = R 2 * (V in / R total ), reescribiéndolo de nuevo: V out = R 2 * (V in / R 1 + R 2 ).
Ahora el trabajo es encontrar R 1 :
V out / R 2 = V in / (R 1 + R 2 ) - > (R 2 * V in ) / V out = R 1 + R 2 .
Finalmente:
R 1 = [(R 2 * V in ) / V out ] - R 2 . Lo cual también podemos reescribirlo de esta manera: R 1 = [(V in / V out ) -1] * R < sub> 2 .
Convertidor analógico a digital (ADC):
que recibe un valor de voltaje y lo convierte en un valor digital correspondiente aproximado.
Descripción general de la resolución ADC:
La resolución determina la escala / nivel de la conversión, por ejemplo, si tenemos un ADC de 2 bits que puede leer hasta 10 V como entrada, los valores correspondientes posibles serán:
Voltage 2-Bit Digital Rep.
0 to 2.5 00
2.5 to 5 01
5 to 7.5 10
7.5 to 10 11
Entonces, son 2 2 = 4 números diferentes. Por lo tanto, el rango de valores digitales es: 0 a 3, de la misma manera, si tenemos ADC de 10 bits - > 2 10 = 1024, el rango de valores digitales es: 0 a 1023.
Relacionando el valor de ADC con el voltaje:
El ADC reporta un valor ratiométrico. Esto significa que para un ADC de 10 bits se supone que 5V (Voltaje del sistema) es 1023 y que cualquier valor inferior a 5V será una relación entre 5V y 1023.
Usamos esta simple ecuación:
ADC Resolution / System Voltage = ADC Reading / Analog Voltage Measured
Ahora, reescribiéndolo:
System Voltage = (Analog Voltage Measured * ADC Resolution) / ADC Reading
en el que el voltaje del sistema y el voltaje analógico medido corresponden a V in y V out en la ecuación del divisor de voltaje, respectivamente.
El uso de esto en la ecuación del divisor de voltaje nos da:
R 1 = [((Voltaje analógico medido * Resolución ADC) / Lectura ADC) / Voltaje analógico medido - 1] * R 2
Sigue reescribiéndolo:
R 1 = [(Voltaje analógico medido * Resolución ADC) / (Lectura ADC * Voltaje analógico medido) - 1] * R 2 - >
R 1 = [(Resolución ADC) / (Lectura ADC) - 1] * R 2 - >
R 1 = [(Resolución ADC) / Lectura ADC) - (Lectura ADC / Lectura ADC)] * R 2 - >
R 1 = [(Resolución ADC - Lectura ADC) / Lectura ADC)] * R 2 - >
Finally:
R 1 = R 2 * (Resolución ADC - Lectura ADC) / Lectura ADC) : en la que R 1 es la resistencia del sensor (R s ), R 2 es la resistencia de carga (R L ) y la resolución ADC es 1023.