Derivación de la frecuencia de resonancia del circuito RLCC

0

Estoy tratando de determinar la frecuencia de resonancia de un resonador RLC con un condensador adicional, como se muestra a continuación:

simular este circuito : esquema creado usando CircuitLab

Dos casos son fáciles de determinar:

$$ Rp = 0 \ rightarrow \ frac {1} {\ sqrt {LsCs}} $$ $$ Rp = \ infty \ rightarrow \ frac {1} {\ sqrt {Ls \ left (\ frac {1} {1 / Cs + 1 / Cp} \ right)}} $$

Ahora me gustaría derivar una fórmula que incluya Rp. ¿Cómo debo abordar esto?

    
pregunta Douwe66

1 respuesta

1

Cuando Rp es infinito, su ecuación se muestra incorrectamente. Los dos condensadores NO están en paralelo; están en serie y como tales se suman de esta manera: -

\ $ C_T = \ dfrac {1} {\ frac {1} {C_S} + \ frac {1} {C_P}} \ $

Cuando Rp es cero ohmios, no hay resonancia, por lo que su primera ecuación no tiene sentido.

Entonces, aquí está el siguiente problema: ¿qué quiere decir con resonancia? ¿Quieres decir: -

  1. ¿La frecuencia a la que la impedancia es máxima (sintonización paralela)?
  2. ¿La frecuencia a la que la impedancia es mínima (sintonización en serie)?
  3. ¿La frecuencia que produce el cambio de fase correcto para hacer oscilar un oscilador de perforación?

Entonces, cuando haya decidido qué hacer con la fórmula en su pregunta y luego haya decidido qué es lo que realmente está buscando, podría ver la madera de los árboles.

    
respondido por el Andy aka