ABCD a la derivación de parámetros de dispersión

6

Actualmente estoy estudiando ingeniería de microondas como tema.

En todas partes, en Internet y en los libros, solo han mostrado la derivación de S11 y S22 de los parámetros ABCD de una red. Sí, eso es intuitivo, ya que S11 es tau (in) y S22 es tau (out), y tengo fórmulas de impedancia para ambos, lo que facilita su cálculo.

Sin embargo, ¿cómo obtengo S12 y S21 de los parámetros ABCD de una red? He intentado buscar mucho, pero no obtengo la derivación, solo el resultado.

Intenté resolver esto por mi cuenta, pero no lo entiendo, principalmente porque los parámetros de dispersión necesitan ondas transmitidas y reflejadas, mientras que otros parámetros funcionan con voltajes / corrientes.

¿Algún recurso al que pueda dirigirme? Gracias!

    
pregunta AgilE

1 respuesta

6

La nota A-95 de Hewlet Packard es un texto clásico sobre este tema. Dado que las divisiones relacionadas de HP se separaron para formar Agilent a mediados de los 90, este texto ahora se encuentra en enlace .

Verifique en las páginas 2 y 3 las derivaciones de los parámetros S. Para resumir, dada una red de dos puertos como se muestra:

con la impedancia \ $ Z_0 \ $, los voltajes de incidentes normalizados \ $ a_1 \ $ y \ $ a_2 \ $ se calculan de la siguiente manera:

\ $ a_1 = \ frac {V_1 + I_1 * Z_0} {2 \ sqrt {Z_0}} \ $

\ $ a_2 = \ frac {V_2 + I_2 * Z_0} {2 \ sqrt {Z_0}} \ $

Los voltajes reflejados \ $ b_1 \ $ y \ $ b_2 \ $ se calculan de la siguiente manera. Note la forma similar:

\ $ b_1 = \ frac {V_1-I_1 * Z_0} {2 \ sqrt {Z_0}} \ $

\ $ b_2 = \ frac {V_2-I_2 * Z_0} {2 \ sqrt {Z_0}} \ $

Estos valores se derivan de los voltajes y corrientes. Simplemente se normalizan para que las siguientes ecuaciones tengan más sentido y sean más consistentes y compactas. Los parámetros de S se pueden calcular como

\ $ s_ {11} = \ left. {\ frac {b_1} {a_1}} \ right | _ {a_2 = 0} \ $

\ $ s_ {22} = \ left. {\ frac {b_2} {a_2}} \ right | _ {a_1 = 0} \ $

\ $ s_ {21} = \ left. {\ frac {b_2} {a_1}} \ right | _ {a_2 = 0} \ $

\ $ s_ {12} = \ left. {\ frac {b_1} {a_2}} \ right | _ {a_1 = 0} \ $

El texto contiene muchos más detalles sobre el significado de cada uno de estos valores y sus derivaciones, pero esas ecuaciones deberían permitirle avanzar en su problema.

    
respondido por el Kevin Vermeer

Lea otras preguntas en las etiquetas