Otro intento, según el consejo de The Photon's:
\ $ F_ {DTFT} \ {(-1) ^ n \} = \ sum \ limits_ {n = - \ infty} ^ {\ infty} (- 1) ^ ne ^ {- i \ theta n} \ $
\ $ = \ sum \ limits_ {even \ space n's} e ^ {- i \ theta n} - \ sum \ limits_ {odd \ space n's} e ^ {- i \ theta n} \ $
\ $ = \ sum \ limits_ {k = - \ infty} ^ {\ infty} e ^ {- i \ theta 2k} - \ sum \ limits_ {m = - \ infty} ^ {\ infty} e ^ {-i \ theta (2m + 1)} \ $
\ $ = \ sum \ limits_ {k = - \ infty} ^ {\ infty} e ^ {- i \ theta 2k} - e ^ {- i \ theta} \ sum \ limits_ {m = - \ infty } ^ {\ infty} e ^ {- i \ theta 2m} \ $
Viendo la suma \ $ \ sum \ limits_ {k = - \ infty} ^ {\ infty} e ^ {- i \ theta 2k} \ $:
\ $ \ sum \ limits_ {k = - \ infty} ^ {\ infty} e ^ {- i \ theta 2k} = \ sum \ limits_ {k = - \ infty} ^ {0} e ^ {- i \ theta 2k} + \ sum \ limits_ {k = 0} ^ {\ infty} e ^ {- i \ theta 2k} -1 \ $
\ $ = \ sum \ limits_ {k = 0} ^ {\ infty} e ^ {i \ theta 2k} + \ sum \ limits_ {k = 0} ^ {\ infty} e ^ {- i \ theta 2k} -1 \ $
\ $ = \ frac {1} {1-e ^ {- i 2 \ theta}} + \ frac {1} {1-e ^ {i 2 \ theta}} - 1 \ $
Entonces:
\ $ F_ {DTFT} \ {(-1) ^ n \} = ... = \ sum \ limits_ {k = - \ infty} ^ {\ infty} e ^ {- i \ theta 2k} - e ^ {- i \ theta} \ sum \ limits_ {m = - \ infty} ^ {\ infty} e ^ {- i \ theta 2m} \ $
\ $ F_ {DTFT} \ {(-1) ^ n \} = ... = (\ frac {1} {1-e ^ {- i 2 \ theta}} + \ frac {1} { 1-e ^ {i 2 \ theta}} - 1) - e ^ {- i \ theta} (\ frac {1} {1-e ^ {- i 2 \ theta}} + \ frac {1} {1 -e ^ {i 2 \ theta}} - 1) \ $
Y luego de alguna manera convoluyo este resultado con \ $ X (\ theta) \ $?