Tengo razón sobre esta función de transferencia:
Mi trabajo:
$$ \ text {I} _ {\ text {in}} (t) + \ text {I} _ {\ text {p}} (t) = 0 \ Longleftrightarrow $$ $$ \ text {I} _ {\ text {p}} (t) = - \ text {I} _ {\ text {in}} (t) \ Longleftrightarrow $$ $$ \ text {I} _ {\ text {p}} (t) = - \ frac {\ text {V} _ {\ text {in}} (t)} {\ text {R} _1} $$
$$ \ text {I} _ {\ text {p}} (t) = \ text {I} _ {\ text {C}} (t) + \ text {I} _ {\ text {R } _2} (t) \ Longleftrightarrow $$ $$ \ text {I} _ {\ text {p}} (t) = \ text {C} \ text {V} '_ {\ text {out}} (t) + \ frac {\ text {V} _ {\ text {out}} (t)} {\ text {R} _2} $$
$$ - \ frac {\ text {V} _ {\ text {in}} (t)} {\ text {R} _1} = \ text {C} \ text {V} '_ {\ text {out}} (t) + \ frac {\ text {V} _ {\ text {out}} (t)} {\ text {R} _2} \ Longleftrightarrow $$ $$ \ mathcal {L} _t \ left [- \ frac {\ text {V} _ {\ text {in}} (t)} {\ text {R} _1} \ right] _ {(s)} = \ mathcal {L} _t \ left [\ text {C} \ text {V} '_ {\ text {out}} (t) + \ frac {\ text {V} _ {\ text {out}} (t )} {\ text {R} _2} \ right] _ {(s)} \ Longleftrightarrow $$ $$ - \ frac {\ text {V} _ {\ text {in}} (s)} {\ text {R} _1} = \ text {C} s \ text {V} _ {\ text {out} } (s) + \ frac {\ text {V} _ {\ text {out}} (s)} {\ text {R} _2} \ Longleftrightarrow $$ $$ \ color {rojo} {\ frac {\ text {V} _ {\ text {out}} (s)} {\ text {V} _ {\ text {in}} (s)} = - \ frac {\ text {R} _2} {\ text {R} _1 \ left (1+ \ text {C} \ text {R} _2s \ right)}} $$