¿Cuál es la razón por la que mi kernel RTOS multitarea PIC16 no funciona?

11

Estoy intentando crear un RTOS semipremperativo (cooperativo) para microcontroladores PIC x16. En mi anterior , he aprendido que acceder al puntero de la pila de hardware no es posible en estos núcleos. He visto esta página en PIClist, y esto es lo que estoy tratando de implementar usando C .

Mi compilador es Microchip XC8 y actualmente estoy trabajando en un PIC16F616 con un oscilador RC interno de 4MHz seleccionado en los bits de configuración.

Aprendí que puedo acceder a los registros PCLATH y PCL con C, mirando el archivo de encabezado de mi compilador. Por lo tanto, traté de implementar un conmutador de tareas simple.

Funciona como se desea en el depurador si hago una pausa en el depurador después de reiniciar, restablecer y configurar PC en el cursor cuando el cursor no está en la primera línea ( TRISA=0; ) sino en otra línea (por ejemplo, ANSEL=0; ). En el primer inicio del depurador, recibo estos mensajes en Debugger Console :

Launching
Programming target
User program running
No source code lines were found at current PC 0x204

Editar: No sé qué lo hizo funcionar, pero el depurador ahora funciona perfectamente. Por lo tanto, omita el resultado y el párrafo anteriores.

Editar: Cambiar la definición principal de esta manera hace que el código a continuación funcione. Esto inicia la función principal en la dirección del programa 0x0099 . No sé qué causa esto. Esto no es una solución real. Ahora estoy adivinando que hay un error específico del compilador.

void main(void) @ 0x0099
{

Aquí está mi código C:

/* 
 * File:   main.c
 * Author: abdullah
 *
 * Created on 10 Haziran 2012 Pazar, 14:43
 */
#include <xc.h> // Include the header file needed by the compiler
__CONFIG(FOSC_INTOSCIO & WDTE_OFF & PWRTE_ON & MCLRE_OFF & CP_OFF & IOSCFS_4MHZ & BOREN_ON);
/*
 * INTOSCIO oscillator: I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN
 * WDT disabled and can be enabled by SWDTEN bit of the WDTCON register
 * PWRT enabled
 * MCLR pin function is digital input, MCLR internally tied to VDD
 * Program memory code protection is disabled
 * Internal Oscillator Frequency Select bit : 4MHz
 * Brown-out Reset Selection bits : BOR enabled
 */

/*
 * OS_initializeTask(); definition will copy the PCLATH register to the task's PCLATH holder, which is held in taskx.pch
 * This will help us hold the PCLATH at the point we yield.
 * After that, it will copy the (PCL register + 8) to current task's PCL holder which is held in taskx.pcl.
 * 8 is added to PCL because this line plus the "return" takes 8 instructions.
 * We will set the PCL after these instructions, because
 * we want to be in the point after OS_initializeTask when we come back to this task.
 * After all, the function returns without doing anything more. This will initialize the task's PCLATH and PCL.
 */
#define OS_initializeTask(); currentTask->pch = PCLATH;\
                             currentTask->pcl = PCL + 8;\
                             asm("return");

/*
 * OS_yield(); definition will do the same stuff that OS_initializeTask(); definition do, however
 * it will return to "taskswitcher" label, which is the start of OS_runTasks(); definition.
 */

#define OS_yield();          currentTask->pch = PCLATH;\
                             currentTask->pcl = PCL + 8;\
                             asm("goto _taskswitcher");

/*
 * OS_runTasks(); definition will set the "taskswitcher" label. After that it will change the
 * current task to the next task, by pointing the next item in the linked list of "TCB"s.
 * After that, it will change the PCLATH and PCL registers with the current task's. That will
 * make the program continue the next task from the place it left last time.
 */

#define OS_runTasks();       asm("_taskswitcher");\
                             currentTask = currentTask -> next;\
                             PCLATH = currentTask->pch;\
                             PCL = currentTask->pcl;

typedef struct _TCB // Create task control block and type define it as "TCB"
{
    unsigned char pch; // pch register will hold the PCLATH value of the task after the last yield.
    unsigned char pcl; // pcl register will hold the PCL value of the task after the last yield.
    struct _TCB* next; // This pointer points to the next task. We are creating a linked list.
} TCB;

TCB* currentTask; // This TCB pointer will point to the current task's TCB.

TCB task1; // Define the TCB for task1.
TCB task2; // Define the TCB for task2.

void fTask1(void); // Prototype the function for task1.
void fTask2(void); // Prototype the function for task2.

void main(void)
{
    TRISA = 0; // Set all of the PORTA pins as outputs.
    ANSEL = 0; // Set all of the analog input pins as digital i/o.
    PORTA = 0; // Clear PORTA bits.

    currentTask = &task1; // We will point the currentTask pointer to point the first task.

    task1.next = &task2; // We will create a ringed linked list as follows:
    task2.next = &task1; // task1 -> task2 -> task1 -> task2 ....

    /*
     * Before running the tasks, we should initialize the PCL and PCLATH registers for the tasks.
     * In order to do this, we could have looked up the absolute address with a function pointer.
     * However, it seems like this is not possible with this compiler (or all the x16 PICs?)
     * What this compiler creates is a table of the addresses of the functions and a bunch of GOTOs.
     * This will not let us get the absolute address of the function by doing something like:
     * "currentTask->pcl=low(functionpointer);"
     */
    fTask1(); // Run task1 so that we get the address of it and initialize pch and pcl registers.
    currentTask = currentTask -> next; // Point the currentTask pointer to the next pointer which
    fTask2(); // is task2. And run task2 so that we get the correct pch and pcl.

    OS_runTasks(); // Task switcher. See the comments in the definitions above.
}

void fTask1(void)
{
    OS_initializeTask(); // Initialize the task
    while (1)
    {
        RA0 = ~RA0; // Toggle PORTA.0
        OS_yield(); // Yield
        RA0 = ~RA0; // Toggle PORTA.0
    }
}

void fTask2(void)
{
    OS_initializeTask(); // Initialize the task
    while (1)
    {
        RA1 = ~RA1; // Toggle PORTA.1
        OS_yield(); // Yield
        RA1 = ~RA1; // Toggle PORTA.1
    }
}

Y aquí es el archivo de listado de desensamblado que creó mi compilador. Comienza en line 74 .

He programado el chip real, y no he cambiado nada en PORTA; no funciona.

¿Cuál es la razón por la que mi programa no funciona?

    

6 respuestas

1

A continuación se muestra la forma de hacerlo con el ensamblaje en línea usando el compilador XC8, y funciona ahora. Sin embargo, necesito agregar código de desarrollo para guardar y restaurar el registro STATUS , que parece un poco más complicado de lo que es para un registro normal.

Editar: El código ha cambiado. Consulte las versiones anteriores de esta publicación para obtener el código anterior.

/*
 * File:   main.c
 * Author: abdullah
 *
 * Created on 10 Haziran 2012 Pazar, 14:43
 */
#include <xc.h> // Include the header file needed by the compiler
#include "RTOS.h" // Include the header for co-operative RTOS.
__CONFIG(FOSC_INTOSCIO & WDTE_OFF & PWRTE_ON & MCLRE_OFF & CP_OFF & IOSCFS_4MHZ & BOREN_ON);

unsigned char OS_currentTask; // This register holds the current task's place in the array OS_tasks
unsigned char OS_tasks[4]; // This array holds PCL and PCLATH for tasks. This array will have..
//                            .. (number of tasks)*2 elements, since every task occupies 2 places.

void fTask1(void); // Prototype the function for task1.
void fTask2(void); // Prototype the function for task2.

void main(void)
{
    TRISA = 0; // Set all of the PORTA pins as outputs.
    TRISC = 0; // Set all of the PORTC pins as outputs.
    ANSEL = 0; // Set all of the analog input pins as digital i/o.
    PORTA = 0; // Clear PORTA bits.
    PORTC = 0; // Clear PORTC bits.

    OS_currentTask = 0; // Current task is first task.
    fTask1(); // Call task to initialize it.
    OS_currentTask += 2; // Increment task pointer by two since every task occupies 2 places in the array.
    fTask2(); // Call task to initialize it.
    OS_runTasks(4); // Run the tasks in order. The argument of this macro takes is: (Number of tasks) * 2
}

void fTask1(void)
{
    OS_initializeTask(); // Initialize the task so that task runner can get its ingredients.
    while (1)
    {
        PORTC = 0xAA;
        OS_yield(); // Yield CPU to other tasks.
        PORTC = 0x55;
        OS_yield(); // Yield CPU to other tasks.
    }
}

void fTask2(void)
{
    OS_initializeTask(); // Initialize the task so that task runner can get its ingredients.
    while (1)
    {
        PORTC = 0xFF;
        OS_yield(); // Yield CPU to other tasks.
        PORTC = 0x00;
        OS_yield(); // Yield CPU to other tasks.
    }
}

Y aquí está el archivo de encabezado RTOS.h :

/* 
 * File:   RTOS.h
 * Author: abdullah
 *
 * Created on 21 Haziran 2012 Perşembe, 10:51
 */

#ifndef RTOS_H
#define RTOS_H

asm("OS_yield MACRO");
asm("local OS_tmp");
asm("movlw   _OS_tasks            ; Store the address of tasks, which is the start address of our task 'array'."); 
asm("addwf   _OS_currentTask, w   ; Add current task's index to the start address."); 
asm("movwf   fsr                  ; We have the index of current task in W. Copy it to FSR"); 
asm("movlw   high(OS_tmp)         ; Copy PCLATH register's contents for the label, to W register.");
asm("movwf   indf                 ; Copy W to current task's first item. We now store PCLATH of the current state of the task."); 
asm("incf    fsr, f               ; Increment index, so that we will point to the next item of current task."); 
asm("movlw   low(OS_tmp)          ; Copy PCL of the label to W register. This will let us save the PCL of the current state of the task.");
asm("movwf   indf                 ; Copy W to task's next item. With that, we will initialize the current task.");
asm("goto    OS_taskswitcher");
asm("OS_tmp:                      ; We will use this label to gather the PC of the return point.");
asm("ENDM"); 

#define OS_yield(); asm("OS_yield");

asm("OS_initializeTask MACRO");
asm("local   OS_tmp");
asm("movlw   _OS_tasks            ; Store the address of tasks, which is the start address of our task 'array'."); 
asm("addwf   _OS_currentTask, w   ; Add current task's index to the start address."); 
asm("movwf   fsr                  ; We have the index of current task in W. Copy it to FSR"); 
asm("movlw   high(OS_tmp)        ; Copy PCLATH register's contents for the label, to W register."); 
asm("movwf   indf                 ; Copy W to current task's first item. We now store PCLATH."); 
asm("incf    fsr,f                ; Increment index, so that we will point to the next item of current task."); 
asm("movlw   low(OS_tmp)         ; Copy PCL of the label to W register. This will let us save the PCL of the current state of the task."); 
asm("movwf   indf                 ; Copy W to task's next item. With that, we will initialize the current task."); 
asm("return                       ; We have gathered our initialazation information. Return back to main."); 
asm("OS_tmp                      ; We will use this label to gather the PC of the return point.");
asm("ENDM"); 

#define OS_initializeTask(); asm("OS_initializeTask");

asm("OS_runTasks MACRO numberOfTasks");
asm("global OS_taskswitcher");
asm("OS_taskswitcher:");
asm("CLRWDT"); 
asm("movlw   0x02                 ; W = 2"); 
asm("addwf   _OS_currentTask, f   ; Add 2 to currentTask, store it in currentTask."); 
asm("movlw   numberOfTasks        ; W = numOfTasks");
asm("subwf   _OS_currentTask, w   ; w= f - w"); 
asm("btfsc   status, 0            ; If currentTask >= numOfTasks"); 
asm("clrf    _OS_currentTask      ; Clear currentTask"); 
asm("movlw   _OS_tasks            ; Store the address of tasks, which is the start address of our task 'array'."); 
asm("addwf   _OS_currentTask, w   ; Add current task's index to the start address."); 
asm("movwf   fsr                  ; We have the index of current task in W. Copy it to FSR"); 
asm("movf    indf, w              ; Copy the contents of current task's first item to W"); 
asm("movwf   pclath               ; Copy W to PCLATH. As a result, current task's PCLATH will be in PCLATH register."); 
asm("incf    fsr, f               ; Increment index, so that we will point to the next item of current task."); 
asm("movf    indf, w              ; Copy the contents of current task's second item to W."); 
asm("movwf   pcl                  ; Copy W to PCL. Finally, current task's PCL will be in PCL register.");
asm("ENDM");

#define OS_runTasks(numberOfTasks); asm("OS_runTasks "#numberOfTasks);

#endif  /* RTOS_H */
    
respondido por el abdullah kahraman
10

Lo que estás tratando de hacer es complicado, pero muy educativo (si estás preparado para gastar mucho esfuerzo).

Primero, debe darse cuenta de que este tipo de conmutación de tareas solo para PC (a diferencia de PC + SP) (que es lo único que puede hacer en un núcleo PIC de 12 o 14 bits) solo funcionará cuando todos Las declaraciones de rendimiento () en una tarea tienen la misma función: no pueden estar en una función llamada, y el compilador no debe haber alterado la estructura de la función (como podría hacerlo la optimización).

Siguiente:

currentTask->pch = PCLATH;\
currentTask->pcl = PCL + 8;\
asm("goto _taskswitcher");
  • Parece que asumes que PCLATH son los bits superiores del contador del programa, ya que PCL son los bits inferiores. Este no es el caso. Cuando escribe en PCL, los bits de PCLATH se escriben en la PC, pero los bits de PC superiores nunca se escriben (implícitamente) en PCLATH. Vuelva a leer la sección correspondiente de la hoja de datos.
  • Incluso si PCLATH fuera la parte superior de la PC, esto causaría problemas cuando la instrucción después del goto no esté en la misma 'página' de 256 instrucciones que la primera instrucción.
  • el plano simple no funcionará cuando _taskswitcher no esté en la página actual de PCLATH, necesitará un LGOTO o equivalente.

Una solución a su problema de PCLATH es declarar una etiqueta después del goto, y escribir los bits inferior y superior de esa etiqueta en sus ubicaciones pch y pcl. Pero no estoy seguro de que pueda declarar una etiqueta 'local' en el ensamblaje en línea. Seguro que puedes en MPASM (Olin sonreirá).

Por último, para este tipo de cambio de contexto, debe guardar y restaurar TODO el contexto del que depende el compilador, que podría incluir

  • registro (s) de direccionamiento
  • indicadores de estado
  • rascar ubicaciones de memoria
  • variables locales que pueden superponerse en la memoria porque el compilador no se da cuenta de que sus tareas deben ser independientes
  • otras cosas que no puedo imaginar ahora, pero el autor del compilador podría usar en la próxima versión del compilador (tienden a ser muy imaginativos)

La arquitectura PIC es más problemática a este respecto porque hay muchos recursos ubicados en todo el mapa de memoria, donde las arquitecturas más tradicionales los tienen en registros o en la pila. Como consecuencia, los compiladores de PIC a menudo no generan código reentrante, que es lo que definitivamente necesitas para hacer las cosas que quieres (una vez más, Olin probablemente sonreirá y se unirá).

Si te gusta esto al escribir un conmutador de tareas, te sugiero que visites una CPU que tenga una organización más tradicional, como ARM o Cortex. Si está atrapado con los pies en una placa de concreto de PIC, estudie los conmutadores de PIC existentes (por ejemplo, ¿salvo / pumkin?).

    
respondido por el Wouter van Ooijen
7

Navegué por el listado de ensamblajes que proporcionaste, y nada salta como obviamente roto.

Si yo fuera tú, mis próximos pasos serían:

(1) Elegiría algún otro método para hacer parpadear los LED. El notorio     El "problema de lectura-modificación-escritura" puede (o no) ser activado por el     "XORWF PORTA, F" en la lista de ensamblados.

Quizás algo como:

// Partial translation of code from abdullah kahraman
// untested code
// feel free to use however you see fit
void fTask2(void)
{
    OS_initializeTask(2); // Initialize task 2
    while (1)
    {
        PORTC = 0xAA;
        OS_yield(2); // Yield from task 2
        PORTC = 0x55;
        OS_yield(2); // Yield from task 2
    }
}

(Si realmente desea ver explicaciones detalladas sobre por qué "XORWF PORTA, F" a menudo causa problemas, consulte " ¿Qué causa la activación de un solo pin de salida en el Microchip PIC16F690 para apagar espontáneamente otro pin en el mismo puerto? "; " ¿Qué sucede cuando los datos se escriben en LATCH? "; " El problema de lectura-modificación-escritura "; " Leer antes de escribir " )

(2) Lo haría en un solo paso a través del código, asegurándome de que las variables se configuren en los valores esperados y en la secuencia esperada. No estoy seguro de si existe un depurador de hardware de un solo paso para el PIC16F616, pero hay muchos excelentes simuladores de microcontroladores PIC como PICsim que puede simular chips de la serie PIC16.

El código de un solo paso (en un simulador o con un depurador de hardware de un solo paso) es una buena manera de entender los detalles de lo que realmente está sucediendo, confirmar que las cosas están sucediendo de la manera que usted quería y le permite ver cosas que son prácticamente imposibles de ver cuando se ejecuta el programa a toda velocidad.

(3) Si todavía estoy perplejo, Intentaría traducir el código para utilizar matrices en lugar de punteros. Algunas personas consideran que usar los punteros es un poco complicado y difícil de depurar. A menudo encuentro que, en el proceso de traducir un código de puntero complicado en código orientado a matrices, descubro cuál es el error. Incluso si termino volviendo al código del puntero original y desechando la versión de matriz, El ejercicio es útil porque me ayudó a encontrar y corregir el error. (A veces, el compilador puede generar código más corto y más rápido a partir de un código orientado a matrices, por lo que en ocasiones arrojo el código del puntero original y conservo la versión de la matriz).

Tal vez algo como

// Partial translation of code from abdullah kahraman
// untested code
// feel free to use however you see fit
struct TCB_t // Create task control block and type define it as "TCB_t"
{
    unsigned char pch; // PCLATH value
    unsigned char pcl; // PCL value
    int next; // This array index points to the next task. We are creating a linked list.
};

int currentTask = 1; // This TCB index will point to the current task's TCB.

struct TCB_t tasks[3]; // Define the TCB for task1 and task2.

#define OS_initializeTask(x); tasks[x].pch = PCLATH;\
                             tasks[x].pcl = PCL + 8;\
                             asm("return");

#define OS_runTasks();       asm("_taskswitcher");\
                             currentTask = tasks[currentTask].next;\
                             PCLATH = tasks[currentTask].pch;\
                             PCL = tasks[currentTask].pcl;

#define OS_yield(x);         tasks[x].pch = PCLATH;\
                             tasks[x].pcl = PCL + 8;\
                             asm("goto _taskswitcher");
    
respondido por el davidcary
3

Básicamente estaría de acuerdo con davidcary. Parece que podría funcionar.

  

No sé qué lo hizo funcionar, pero el depurador ahora funciona perfectamente.

Supongo que con esto quiere decir que funciona perfectamente en el simulador .

1) Verifique que sus tareas funcionen solas, en un entorno sin RTOS en el chip real.

2) Hacer depuración en circuito. Pase por el programa en el chip real y observe todas las variables relevantes para asegurarse de que todo vaya según lo planeado.

    
respondido por el Rocketmagnet
1

Solo miré tu código brevemente, pero no tiene sentido. En varios lugares, está escribiendo a PCL, y luego espera que siga las instrucciones a continuación.

Como también dije antes, C no es apropiado para este tipo de acceso de bajo nivel de los registros de hardware fundamentales. Realmente necesitas usar el ensamblaje para esto. Tratar de averiguar por qué el código C no funciona es solo una pérdida inútil de tiempo.

    
respondido por el Olin Lathrop
0

A continuación se muestra cómo implementar esto utilizando ensamblador. Acceda al mismo código con formato (enlaces a Pastebin) . ¿Cómo puede ser mejorado? Este es mi primer programa en ensamblaje PIC, cualquier comentario es apreciado.

list p=16f616
#include p16f616.inc

;*** Configuration Bits ***
__CONFIG _FOSC_INTOSCIO & _WDTE_OFF & _WDT_OFF & _PWRTE_ON & _MCLRE_OFF & _CP_OFF & _IOSCFS_8MHZ & _BOREN_ON
;**************************

;*** Variable Definitions ***
VARS        UDATA                   ; Define undefined data(s).
numOfTasks  res     1               ; This variable holds the number of tasks multiplied by 2.
currentTask res     1               ; Index variable that points to the current task's index in "tasks"
tasks       res     4               ; This is task "array". Every task occupies 2 bytes.
;****************************

;*** Reset Vector ***
RESET   CODE    0x0000              ; Define a code block starting at 0x0000, which is reset vector, labeled "RESET"
        goto    start               ; Start the program.
;********************

;*** Main Code ***
MAIN    CODE
start                               ; Label the start of the program as "start".
        banksel TRISA               ; Select appropriate bank for TRISA.
        clrf    TRISA               ; Clear TRISA register. Configure all of the PORTA pins as digital outputs.
        clrf    TRISC               ; Clear TRISC register. TRISC and TRISA are at the same bank, no need for "banksel".
        clrf    ANSEL               ; Clear ANSEL register and configure all the analog pins as digital i/o.
        banksel PORTA               ; Select appropriate bank for PORTA.
        clrf    PORTA               ; Clear PORTA register.
        clrf    PORTC               ; Clear PORTC register. PORTC and PORTA are at the same bank, no need for "banksel".


        movlw   0x04                ; W = Number of tasks * 2.
        movwf   numOfTasks          ; Since every task has two datas in it, we will multiply by 2.
        clrf    currentTask         ; Set the task#0 as current task.

        CALL    task0               ; Call task#0 since we need to initialize it. We are going to get..
                                    ; ..its PCL and PCLATH values at the start address.
        movlw   0x02                ; W = 2
        addwf   currentTask, f      ; Increment currentTask by 2, since every task occupies 2 places.

        CALL    task1               ; Call task#1, for initialazation.

taskswitcher
        movlw   0x02                ; W = 2
        addwf   currentTask, f      ; Add 2 to currentTask, store it in currentTask.
        movf    numOfTasks, w       ; W = numOfTasks
        subwf   currentTask, w      ; w= f - w
        btfsc   STATUS, 0           ; If currentTask >= numOfTasks
        clrf    currentTask         ; Clear currentTask

        movlw   tasks               ; Store the address of tasks, which is the start address of our task "array".
        addwf   currentTask, w      ; Add current task's index to the start address.
                                    ; For example; task1's index is 2:  [task0_1][task0_2][task1_1][task1_2]....
                                    ;                                       0        1        2        3
        movwf   FSR                 ; We have the index of current task in W. Copy it to FSR
        movf    INDF, w             ; Copy the contents of current task's first item to W
        movwf   PCLATH              ; Copy W to PCLATH. As a result, current task's PCLATH will be in PCLATH register.

        incf    FSR, f              ; Increment index, so that we will point to the next item of current task.
        movf    INDF, w             ; Copy the contents of current task's second item to W.
        movwf   PCL                 ; Copy W to PCL. Finally, current task's PCL will be in PCL register.

        goto    $                   ; This instruction is not effective. But, enter the endless loop.

;*** TASK 0 ***
TASK0   CODE
;**************
task0
        movlw   tasks               ; Store the address of tasks, which is the start address of our task "array".
        addwf   currentTask, w      ; Add current task's index to the start address.

        movwf   FSR                 ; We have the index of current task in W. Copy it to FSR
        movf    PCLATH, w           ; Copy PCLATH register's contents to W register.
        movwf   INDF                ; Copy W to current task's first item. We now store PCLATH.

        incf    FSR,f               ; Increment index, so that we will point to the next item of current task.
        movlw   low($+3)            ; Copy PCL+3 to W register. This will let us save the PCL of the start of the task.
        movwf   INDF                ; Copy W to task's next item. With that, we will initialize the current task.
        return                      ; We have gathered our initialazation information. Return back to main.

task0main
        banksel PORTA               ; Select the appropriate bank for PORTA
        movlw   0xAA                ; Move literal to W so that W = 0xAA
        movwf   PORTA               ; PORTA = 0xAA. Use a LATA register to create more robust code.

        movlw   tasks               ; Store the address of tasks, which is the start address of our task "array".
        addwf   currentTask, w      ; Add current task's index to the start address.

        movwf   FSR                 ; We have the index of current task in W. Copy it to FSR
        movf    PCLATH, w           ; Copy PCLATH register's contents to W register.
        movwf   INDF                ; Copy W to current task's first item. We now store PCLATH of the current state of the task.

        incf    FSR,f               ; Increment index, so that we will point to the next item of current task.
        movlw   low($+3)            ; Copy PCL+3 to W register. This will let us save the PCL of the current state of the task.
        movwf   INDF                ; Copy W to task's next item. With that, we will initialize the current task.

        goto    taskswitcher        ; Yield the CPU to the awaiting task by going to task switcher.

        banksel PORTA               ; Select the appropriate bank for PORTA
        movlw   0x55                ; Move literal to W so that W = 0x55
        movwf   PORTA               ; PORTA = 0xAA. Use a LATA register to create more robust code.

        goto    task0main           ; Loop by going back to "task0main". We will continuously toggle PORTA.

;*** TASK 1 ***
TASK1   CODE
;**************
task1
        movlw   tasks               ; Store the address of tasks, which is the start address of our task "array".
        addwf   currentTask, w      ; Add current task's index to the start address.

        movwf   FSR                 ; We have the index of current task in W. Copy it to FSR
        movf    PCLATH, w           ; Copy PCLATH register's contents to W register.
        movwf   INDF                ; Copy W to current task's first item. We now store PCLATH.

        incf    FSR,f               ; Increment index, so that we will point to the next item of current task.
        movlw   low($+3)            ; Copy PCL+3 to W register. This will let us save the PCL of the start of the task.
        movwf   INDF                ; Copy W to task's next item. With that, we will initialize the current task.
        return                      ; We have gathered our initialazation information. Return back to main.

task1main
        banksel PORTA               ; Select the appropriate bank for PORTA
        movlw   0xAA                ; Move literal to W so that W = 0xAA
        movwf   PORTA               ; PORTA = 0xAA. Use a LATA register to create more robust code.

        movlw   tasks               ; Store the address of tasks, which is the start address of our task "array".
        addwf   currentTask, w      ; Add current task's index to the start address.

        movwf   FSR                 ; We have the index of current task in W. Copy it to FSR
        movf    PCLATH, w           ; Copy PCLATH register's contents to W register.
        movwf   INDF                ; Copy W to current task's first item. We now store PCLATH of the current state of the task.

        incf    FSR,f               ; Increment index, so that we will point to the next item of current task.
        movlw   low($+3)            ; Copy PCL+3 to W register. This will let us save the PCL of the current state of the task.
        movwf   INDF                ; Copy W to task's next item. With that, we will initialize the current task.

        goto    taskswitcher        ; Yield the CPU to the awaiting task by going to task switcher.

        banksel PORTA               ; Select the appropriate bank for PORTA
        movlw   0x55                ; Move literal to W so that W = 0x55
        movwf   PORTA               ; PORTA = 0xAA. Use a LATA register to create more robust code.

        goto    task1main           ; Loop by going back to "task1main". We will continuously toggle PORTA.

        END                         ; END of the program.
    
respondido por el abdullah kahraman

Lea otras preguntas en las etiquetas