Para determinar el valor de la resistencia \ $ \ text {R} _ \ text {v} \ $, podemos usar la fórmula que se proporciona en la página wiki:
Entonces, hice un poco de manipulación:
Para la resistencia \ $ \ text {R} _ {\ text {v}} \ $, tenemos:
$$ \ color {red} {\ text {R} _ {\ text {v}} = \ frac {\ text {U} _ {\ text {R} _ \ text {v}}} {\ text {I} _ {\ text {D} _ \ text {z}} + \ frac {\ text {I} _ {\ text {R} _ \ text {L}}} {1+ \ text {h} _ \ text {FE}}} \ tag1} $$
Ahora, para \ $ \ text {U} _ {\ text {R} _ {\ text {v}}} \ $, tenemos:
$$ \ text {U} _ {\ text {in}} = \ text {U} _ {\ text {R} _ \ text {v}} + \ text {U} _ {\ text {D } _ \ text {z}} \ space \ Longleftrightarrow \ space \ text {U} _ {\ text {R} _ \ text {v}} = \ text {U} _ {\ text {in}} - \ text {U} _ {\ text {D} _ \ text {z}} \ tag2 $$
Y para \ $ \ text {I} _ {\ text {R} _ \ text {L}} \ $, tenemos:
$$ \ text {U} _ {\ text {R} _ \ text {L}} = \ text {U} _ \ text {out} = \ text {U} _ {\ text {D} _ \ text {z}} - \ text {U} _ \ text {BE} = \ text {I} _ {\ text {R} _ \ text {L}} \ cdot \ text {R} _ \ text {L } \ space \ Longleftrightarrow \ space \ text {I} _ {\ text {R} _ \ text {L}} = \ frac {\ text {U} _ {\ text {R} _ \ text {L}}} {\ text {R} _ \ text {L}} = \ frac {\ text {U} _ \ text {out}} {\ text {R} _ \ text {L}} = \ frac {\ text {U } _ {\ text {D} _ \ text {z}} - \ text {U} _ \ text {BE}} {\ text {R} _ \ text {L}} \ tag3 $$
Entonces, para \ $ (1) \ $ obtenemos (usando \ $ (2) \ $ y \ $ (3) \ $):
$$ \ color {red} {\ text {R} _ {\ text {v}} = \ frac {\ text {U} _ {\ text {in}} - \ text {U} _ {\ text {D} _ \ text {z}}} {\ text {I} _ {\ text {D} _ \ text {z}} + \ frac {\ text {U} _ {\ text {D} _ \ text {z}} - \ text {U} _ \ text {BE}} {\ text {R} _ \ text {L}} \ cdot \ frac {1} {1+ \ text {h} _ \ text { FE}}} \ tag4} $$
Ahora, para \ $ \ text {h} _ \ text {FE} \ $ del transistor que tenemos:
$$ \ begin {cases} \ text {I} _ \ text {C} = \ text {h} _ \ text {FE} \ cdot \ text {I} _ \ text {B} \\ \\ \ text {I} _ \ text {E} = \ text {I} _ \ text {B} + \ text {I} _ \ text {C} \\ \\ \ text {I} _ \ text {B} = \ text {I} _ \ text {BS} \ cdot \ left (\ exp \ left \ {\ frac {\ epsilon \ cdot \ text {U} _ \ text { BE}} {\ eta \ cdot \ text {k} \ cdot \ text {T}} \ right \} - 1 \ right) \ end {cases} \ space \ space \ por lo tanto \ space \ space \ space \ text {h} _ \ text {FE} = \ frac {\ text {I} _ \ text {E}} {\ text {I} _ \ text {BS} \ cdot \ left (\ exp \ left \ {\ frac {\ epsilon \ cdot \ text {U} _ \ text {BE}} {\ eta \ cdot \ text {k} \ cdot \ text {T}} \ right \} - 1 \ right)} - 1 \ tag5 $$
Por lo tanto, obtenemos para \ $ (1) \ $ y \ $ (4) \ $ (usando \ $ (5) \ $):
$$ \ color {red} {\ text {R} _ {\ text {v}} = \ frac {\ text {U} _ {\ text {in}} - \ text {U} _ {\ text {D} _ \ text {z}}} {\ text {I} _ {\ text {D} _ \ text {z}} + \ frac {\ text {U} _ {\ text {D} _ \ text {z}} - \ text {U} _ \ text {BE}} {\ text {R} _ \ text {L}} \ cdot \ frac {\ text {I} _ \ text {BS} \ cdot \ izquierda (\ exp \ left \ {\ frac {\ epsilon \ cdot \ text {U} _ \ text {BE}} {\ eta \ cdot \ text {k} \ cdot \ text {T}} \ right \} - 1 \ right)} {\ text {I} _ \ text {E}}} \ tag6} $$
Ahora, para un diodo, la relación entre voltaje y corriente viene dada por:
$$ \ text {I} _ {\ text {D} _ \ text {z}} = \ text {I} _ \ text {S} \ cdot \ left (\ exp \ left \ {\ frac { \ epsilon \ cdot \ text {U} _ {\ text {D} _ \ text {z}}} {\ eta \ cdot \ text {k} \ cdot \ text {T}} \ right \} - 1 \ right ) \ tag7 $$
Entonces, para \ $ (1) \ $, \ $ (4) \ $ y \ $ (6) \ $ obtenemos (usando \ $ (7) \ $):
$$ \ color {red} {\ text {R} _ {\ text {v}} = \ frac {\ text {U} _ {\ text {in}} - \ text {U} _ {\ text {D} _ \ text {z}}} {\ text {I} _ \ text {S} \ cdot \ left (\ exp \ left \ {\ frac {\ epsilon \ cdot \ text {U} _ {\ text {D} _ \ text {z}}} {\ eta \ cdot \ text {k} \ cdot \ text {T}} \ right \} - 1 \ right) + \ frac {\ text {U} _ { \ text {D} _ \ text {z}} - \ text {U} _ \ text {BE}} {\ text {R} _ \ text {L}} \ cdot \ frac {\ text {I} _ \ text {BS} \ cdot \ left (\ exp \ left \ {\ frac {\ epsilon \ cdot \ text {U} _ \ text {BE}} {\ eta \ cdot \ text {k} \ cdot \ text {T }} \ right \} - 1 \ right)} {\ text {I} _ \ text {E}}} \ tag8} $$
Pregunta: ¿Cómo puedo encontrar \ $ \ text {I} _ \ text {E} \ $? ¿Puedo hacer la aproximación: \ $ \ text {I} _ \ text {E} \ approx \ text {I} _ \ text {C} \ $?